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The gradients of the basis functions of group theory are vector-valued basis 
functions. When one of the components of such a gradient is evaluated at 
atomic positions, and the values are summed over a set of equivalent atoms, 
the result represents a symmetry coordinate and/or a group orbital. 
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The crucial step in the construction of symmetry coordinates or of  group orbitals 
is finding the relative coefficients of the component displacements or orbitals. The 
two methods commonly used to find these coefficients are 1) projection operators 
and 2) an intuitive process of orbital "matching" [1]. The first method is straight- 
forward except when the irreducible representation in question is generated more 
than once by the components, but the procedure is often lengthy and sometimes 
requires the use of  the character table for a subgroup of  the true group in order to 
be tractable. The second approach is limited by one's intuition, which is risky to 
rely on in unfamiliar cases. 

The intent of  this note is to introduce a rigorous way of deriving symmetry co- 
ordinates and group orbitals from the basis functions of the irreducible representa- 
tions. Not  only does this approach share the complete reliability of  projection 
operators, but the procedure is generally shorter and faster, always treats the full 
point group, and is straightforward even in cases where an irreducible representa- 
tion occurs more than once. The only drawback we can see is the absence of basis 
functions for several irreducible representations in common character tables, but 
tables that fill most of those gaps are available [2]. 

Section 1 is for the reader who is interested in the derivation of  the method; he 
who is more interested in its application may skip to Section 2. 
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1. Derivation 

Let x. with n = 1-3 be one set of Cartesian coordinates x. A symmetry operation 
Rx produces a second set of coordinates [3] 

R x :  x 2 

whose members are 

3 

X2m = ~, r,..x., m = 1 - 3  (1) 
n = l  

and the inverse operation R-  Jx yields a third set 

R - i x = x 3  

consisting of 

3 

X3k = ~ r.kx., k---1-3 (2) 
n = l  

Establish a unit vector e. parallel to each coordinate axis x n. The operator U R that 
operates on e. in the same sense that R operates on x is defined in terms of the same 
matrix elements. 

3 

URe.= Z rmnem (3) 
m = l  

Define the operator PR for the symmetry operation PRf(X) that corresponds to 
Rx as follows [3]. 

PR f(x) = f (R -1  x) = f ( x  3 ) (4) 

Let f (x) and fj  (x) be basis functions for an h-dimensional irreducible representa- 
tion. By definition [3]: 

h 

y, cjifj(x) (5) 
j = l  

Now find the gradient o f f  (x) 

0f,(x) 3 
Vf(x)= e . -  -- ~ e. f i . (x  ) (6) 

n = 1 ~Xn n = 1 

and note that the result is a vector-valued function; i.e., it defines the gradient 
vector at every point. We wish to show that the vector functions Vf;(x), j=  1 4  
are also basis functions for the same irreducible representation as the scalar func- 
tions f;  (x). 

The operators U R and PR are used to perform a symmetry operation on the 
gradient function in Eq. (6). 

3 3 

URPR Vfi(x)= Z Z e,.rm.fi.(x3) (7) 
n = l  m = l  
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But the right-hand side of Eq. (7) is identical to the following result obtained by 
reversing the order of the gradient and symmetry operators. We use Eqs. (4), (6) 
and (2) to get 

v[PR f, (x)] = v[f ,  (x3)] 

0f,(x3) 0 
k = 1 ~ X 3 k  en n = 1 ~Xn  Fnk x n  

3 3 

= Z ~ e,r,kfik(xa) (8) 
k=l n=l  

Next we equate the left-hand sides of Eqs. (7) and (8), and from there Eq. (5) yields 
the desired result. 

uR P .  vf,(x) = v[eR f,(x)] 
h 

= Z cj, Vfj(x) (9) 
j= 1 

Comparison of Eqs. (5) and (9) shows that the functions fj(x) and their gradients 
Vfj(x) are alternative basis functions for the same representation. 

When Vf (x) is evaluated at q equivalent points p, the result is an array of q vectors. 
Let us add the vectors in the array, not with the intent of merging them into one 
total vector, but simply for the purpose of listing them as a composite sum. The 
set of such sums formed from a set of basis functions is also a basis for the same 
irreducible representation, as can be seen by summing Eq. (9) over the q equivalent 
points p. 

URPR (p~= l V fi(X)p) = j~= l Cji (p~= l V f j(X)p ) (10) 

The equivalent points at which Eq. (10) is most useful are the equilibrium positions 
of the atoms in a molecule. The vibrational displacements of the atoms can be 
expressed in terms of any set of independent vectors. Let the vectors e, represent 
unit components of these displacements. Then the symmetry operand in Eq. (t0) 
can be identified as a symmetry coordinate. 

In the axial point groups [2], each symmetry coordinate can be simplified beyond 
its form in Eq. (10). For a set of equivalent atoms, the displacement components in 
the axial direction, say e3, form a set of equivalent vectors apart from the nonaxial 
components. Consequently, the symmetry coordinates are of two types, one made 
exclusively of axial vectors, and the other containing only nonaxial vectors. These 
two types can be separated from their combined form in Eq. (10) to give 

q q 2 q 

Vf(x)p= ~ ~lf,(x)~e,+ ~, f/3(X)pe3 (11) 
p = l  p = l  n =  p = l  

where the two terms on the right each satisfy Eq. (10) independently. Now 
Eq. (11) does not guarantee that any one set of basis functions will be useful for 
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finding both axial and nonaxial symmetry coordinates. Iff~ does not belong to one 
of the irreducible representations generated by the axial vectors, for example, then 
f/a(x)p will be zero and Eq. (10) will be null for that term. This uninformative 
result usually can be avoided by applying Eq. (10) only to those basis functions 
whose irreducible representation is generated by the components in question. 
However, even a generated representation may have one set of basis functions 
that fails to give nonzero coefficients, and yet have other sets that succeed. 

For the nonaxial groups [2], Eq. (11) can be separated further to give three terms 
that independently satisfy Eq. (10). 

2 =21 fAx).e. (12) 
p = l  n= p = l  

Our definition of the unit vectors e, caused the displacements of the atoms to have 
their respective components all lie in the same direction, but this condition is not 
necessary. Let us redefine the vectors en, n= 1-3 to be the unit vectors 0, ~, and r, 
respectively. Also redefine f~,, n-- 1-3 as 

1 0fi 1 ~f/ and Ofi 
r 00' r sin 0 ~qS' ~rr' 

respectively [cf. Eq. (6)]. Then Eqs. (9)-02) are still valid, but we must remember 
that e, is now e,(x). In fact, Eq. (1 l) now applies to every point group, and Eq. 02) 
applies to all the axial and nonaxial point groups. The wider applicability of 
Eqs. (11) and (12) is an important point in favor of this choice of unit vectors, but 
the most significant advantage was pointed out by Hsu and Orchin [4]: these 
unit vectors represent not only atomic displacements, but also sigma- and pi- 
bonding orientations of atomic orbitals. 1 Therefore Eqs. (11) and (12) represent 
group orbitals as well as symmetry coordinates. 

2. Appfication 

The procedure is outlined in four instructions. 1) To represent each displacement 
and/or orbital, place a vector of arbitrary length 2 at each atom and align it with 
one of the unit vectors i,j, k, O, q~, or r, as appropriate. 2) Determine the irreducible 
representations that are generated by these vectors. 3) For each irreducible repre- 
sentation, select a set of :basis functions. Take each basis function and find the 
component of its gradient that contains the unit vector used in step 1). 4) Evaluate 
this gradient component at each equivalent atom, and add these values to get a 
symmetry coordinate and/or a group orbital. The result is normalized as usual. 

As an aid in step 3), a list of basis functions and their gradients will be published 

J These authors used slightly different sets of unit vectors, viz. - 0 ,  4, and - r  in some cases and 
- 0 ,  - 4 ,  - r  in others. 
2 Nonuniform vectors are easier to keep track of during a symmetry operation, especially if the 
transformation matrix is needed in addition to its character. 
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elsewhere, but the gradients of R x, Ry, and R z are worth noting here: they are 
y k -  zj, z i -  xk, and x j -  yi, respectively. 

Steps 1) and 2) are well known, and numerous examples are available [1]. To 
illustrate steps 3) and 4), we consider the Elg pi-bonding molecular orbitals of  
benzene. The molecular plane is xy, with the + x axis passing between carbon atoms 
2 and 3, and the + y  axis through carbon atom 1. Eachp~ orbital is represented as 
a vector in the k direction. Common character tables list two sets of  basis functions 
for Elo, viz. (Rx, Ry) and (xz, yz), but only one set is needed here. The relative 
(x, y) coordinates of  carbon atoms 1-6 are (0, 2), (x/~, 1), (x/~, - 1 ) ,  (0, - 2 ) ,  
( - ~ ,  - 1 )  and ( - x / ~ ,  1), respectively, For R~, the k gradient components at 
atoms 1-6 are k times 2, 1, - 1, - 2, - 1, and 1, respectively. Hence the normalized 
wavefunction, neglecting overlap, is 

1 
7JE1 ~ ( R ~ ) = ~  (2pz 1 +P ,2-Pz3  -2p~4 -Pz5 +Pz6). 

For Ry, the k gradient components are k times 0, - x/3, - x/~, 0, x/~, and x/3, 
respectively, and the wavefunction is 

~E~g (Ry) = �89 -Pz2 --Pz3 +Pz5 +Pz6) 

The other basis set, (xz, yz), works equally well. The reader can verify that 

7"E1 ~ (xz) = - ~e~, (Ry) 

= 

The above change of sign is of  no consequence, but the reader is cautioned that 
some sigma-bonding group orbitals derived by this method for the B orbitals in 
AB, molecules must have their signs reversed in order to have positive overlaps 
with the A basis orbitals. 

In case of  multiple occurrence of an irreducible representation, one simply uses 
the occurrence number of sets of  basis functions that are all orthogonal. 
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